&4

X RNSFIUEFEAR
A FRHS

Union-Find

* Dynamic Equivalence Relation
— Examples
— Definitions
— Brute force implementations
* Disjoint Set
— Straightforward Union-Find
— Weighted Union + Straightforward Find
— Weighted Union + Path-compressing Find

inlet

Maze Generation

outlet

Select a wall to pull
down randomly

If i and j are in same
equivalence class, then
select another wall to
pull down.

Otherwise, joint the two
classes into one.

The maze is complete
when the inlet and outlet
are in one equivalence
class.

Black Pixels

* Maximum black pixel component

— Let a be the size of the component

* Color one pixel black

— How a changes?

— How to choose the pixel, to accelerate the change

1n o

[| [
i | |]| [
[[] {

e]o]efee]efe]e]
[][

e]o]efele]efxlle]
o | o | o { I I I

EEEEEEm

o | o [I[N I I
(/[o o] |« M
[JI] |
BOBRCICILI]«
/[N | | b
(] o [« /N[0[N0/
CICICIC
EEEEEN N

[| [
i | | | [E
[] I O
[[H[| [P
m (m |]| |
(] | W[« [N
(I o | -] |
eefelefe] M |

[| | (|

Lectures on Algorithm Design & Analysis
(LADA) 2017

10/22/2024

In Minimum Spanning Tree

o KruskalZs4 AL EIGY IR AN AT
* Kruskal’s algorithm, greedy strategy:

— Select one edge
* With the minimum weight
* Not in the tree

— Evaluate this edge

* This edge will NOT result in a cycle

 (Critical 1ssue:

— How to know “NO CYCLE”?

— The two nodes of this tree should not be connected by

the edges selected previously.

g5 =)a1ud i Jal
FREBPRLHE
— TR FU
FHR

Dynamic Equivalence Relations

* Equivalence
— Reflexive, symmetric, transitive
— Equivalent classes forming a partition
o SR S —H B T8, HTEMIFEMZS
 Dynamic equivalence relation
— Changing in the process of computation
— IS instruction: yes or no (in the same equivalence class)

— MAKE instruction: combining two equivalent classes, by
relating two unrelated elements, and influencing the
results of subsequent IS instructions.

— Starting as equality relation

Lectures on Algorithm Design & Analysis

10/22/2024
/22/ (LADA) 2017

Implementation: How to Measure

The number of basic operations for processing a sequence
of m MAKE and/or IS instructions on a set S with n
clements.

An Example: $={1,2,3,4,5}
0. [create] {{1}, {2}, {3}, {4}, {5}}
1.15 2=47 No
2.15 3=57 No
3. MAKE 3=5. {{1}, {2}, {3,5}, {4}}
— 4. MAKE 2=5. {{1}, {2,3,5}, {4}}
5.15 2=37 Yes
6. MAKE 4=1. {{1,4}, {2,3,5}}
7.1S 2=47° No

Union-Find based Implementation

* The maze problem
— %8R A . Each cell as a set
— Randomly delete a wall and union two cells

— Loop until you find the inlet and outlet are 1n one
equivalent class

* The Kruskal algorithm
— %8I3R AZ . Each node as a set
— Choose the least weight edge (u,v)
— Find whether u and v are in the same equivalent class
— If not, add the edge and union the two nodes

Implementation: Choices

Matrix (relation matrix)

— Space in O(n?), and worst-case cost in Q(mn)
(mainly for row copying for MAKE)

Array (for equivalence class ID)

— Space 1n ®(n), and worst-case cost 1n Q(mn)
(mainly for search and change for MAKE)

Disjoint Set

— A collection of disjoint sets, supporting Union and
Find operations

— Not necessary to traverse all the elements 1n one set

Union-Find ADT

e Constructor: Union-Find create(int n)

— sets=create(n) refers to a newly created group of sets {1},
{2}, ..., {n} (nsingletons)

e Access Function: int find(UnionFind sets, e)
— find(sets, e)=<e>
* Manipulation Procedures

— void makeSet(UnionFind sets, int e)

— void union(UnionFind sets, int s, int ¢)

Lectures on Algorithm Design & Analysis

10/22/2024
/22/ (LADA) 2017

10

Using Union-Find (as inTree)

* IS 5=
— =tind(s));
— u=tind(s;);
— (==u)?

* MAKE s;=3s;:
— =tind(s));
— u=tind(s;);

— union(z,u);

implementation by inTree

create(n): sequence of makeNode

@@ @ @@

@\ union(t,u)
7 &g
ﬁnd(sj)—&
()

) setParent(z,u)
parent(s;)

Union-Find &§ #« & & 44

— BITREHS290,1,2, -, n"1
— EA—ENERR—~TTFER, FTHRPHIEHRZEFC,
— BANREXZARAILRMRGHTIHE (#9)

e S=RILLE
— TEAIRLERESITRE (&) BHRFHEA(95S)
— YR REY R L R -1

e [{0}, {1,2,4}), {3} ev=sTreayzic

Union(0,3) 2 JG 15 24 T4 1 i i 2

5 4% o #m 2 (Slow)

e AKE ANV EKLASEK TN I~ E=x

— S[i| &R R TR
— SJi]

5

public DisjSetsSlow(int numElements)

{

s = new int [numElements];
for(inti=0;i<s.length;i++)

s[i]=-1;
}
public int find(int x)
{
if(s[x]<0)
return x;
else

return find(s[x]);

—=]| R UA R AR EY AR R

public void union(int x, int y)

{
if(rootl !=root2)

s[rootl] = root2;

Union-Find Program

A union-find program of length m

— 1s (a create(n) operation followed by) a sequence of m union and/or find
operations in any order

A union-find program is considered an input
— The object on which the analysis is conducted

The measure: number of accesses to the parent
— assignments: for union operations

— lookups: for find operations link operation

Union-Find Programf -Funion-find 3k & 2549 15 Jal/ 3 TFe 3K 325 47 .
— R TFIHFAERA T union-findTF29 AL IELEFY, FB 4 Adh—RiZ
1T F2 P A A IR 5 A9 8 3 TE 5 S R —-1~Union-Find Program.
— VT LA P X 1~Union-Find Program#r & &ayedial, WL
S A e Eunion-find-L#d =B JEl,

Lectures on Algorithm Design & Analysis

10/22/2024
/22/ (LADA) 2017

14

Union-find Program & #]

SAEn TR public int find(int x)
| { (")
1. Union(1,2) if(s[x]<0)
2. Union(2,3) return x;
else @
return find(s[x]); T
n-1. Union(n-1,n) }
n. Find(1) . L :
public void union(int x, int y)
{
. if(rootl !=root2)
m. Find(1) s[root1] = root2;
Example i

Worst-case Analysis for Union-Find
Program

* Assuming each lookup/assignment take O(1).

* Each makeSet or union does one assignment, and each find
does d+1 lookups, where d 1s the depth of the node.

L 32:22& 8. unionfg i3y
’ :L.ifiﬂiﬂf»ﬂ&%

n-1. Unlon(n 1 n)

n. Find(1) operations done:
' ni(n=Lyt(menDn ® (mn)
m. Find(1)
Find(1) needs n
Example array lookups

Union & 2 i#

2 =0=0)

o Union(rl,r2)52Br-LBL T LAIE2TEY & F
FEYAR, T LAIEr] TESS& 3

o 4aTTHRIFHEHIR, THIFFHEHKS

e a9y iR

< HC AR 9

Weighted Union: for Shorter Trees
* Weighted union (wUnion)

— always have the tree with fewer nodes as subtree

To keep the Union valid, @

each Union operation 1s /' \

replaced by: @
=tind(7); @

e O 0 N
union(?,u) @

\ Tree made by wUnion

Thg or.der of (t,u) Cost for the program example:
satisfying the

requirement n+3(n-1)+2(m-n+1)

Weighted Union #§ 2 21,

public DisjSetsSlow(int numElements)
{
s = new int [numElements |;
weights = new int[numElements];
for(int 1 = 0; 1 < s.length; i++)
{
s[1]=-1; weights[i] = 1;

h
h
public int find(int x)
{
if(s[x]<0)
return Xx;
else

return find(s[x]);

JE B X BAT IR e root] Flroot2 & A AR
public void wUnion(int rootl, int root2)

{
if(rootl == root2)
return;
if(weights[root2] > weights[root]])
{ int tmp = rootl; rootl = root2; root2 = tmp;}

s[root2] =rootl;
weights[root]] = weights[root1] + weights[root2];

Upper Bound of Tree Height

* After any sequence of Union instructions, implemented by
wUnion, any tree that has k£ nodes will have height at most
| logk |

* Proof by induction on £:

— base case: k=1, the height is 0. t

— by inductive hypothesis: 7 T
1 2

» h<llgh), h<ligh] k, nodes k, nodes

— h=max(hl, h2+1), k=k1+k2 height 7, height 7,

e if h=h,, h<|lgk J<|1gk]
* if h=h,+1, note: k,<k/2
so, h,+1< gk, +1< | 1gk] T

k nodes
height A

Upper Bound for Union-Find Program
(With Weighted Union)

* A Union-Find program of size m, on a set of n elements,
performs O(n+mlogn) link operations in the worst case i1f
wUnion and straight find are used

 Proof:

— At most n-1 wUnion can be done, building a tree with
height at most | logn_,

— Then, each find costs at most | logn_+1.

— Each wUnion costs in (1), so, the upper bound on the cost
of any combination of m wUnion/find operations 1s the cost
of m find operations, that 1s m(LlognJH)e O (n+mlogn)

There do exist programs requiring CQ(n+(m-n)logn) steps.

Path Compression

* FEHR PN EARRIXINESNTE RATEDNDIR
R, REBEARFIRANZR, PR IR NI
findey &5 &,

o A Y FIAKN ML KL ML 4T

o ZENInd(X)¥Y5LFE P I5 AX B A XA =T EY IR
TR BIR La) 2 EBLE AN

— A e gk N FaxIE/ —~F-F (ARPR4EE)
— AR B —RIBTEH T AN X L 2E R B I A B AR
1

I\

— |BIARAARIINdSw T 8d)E, BERESTevfindILeAd
TR =83)4]

y

Path Compression

Path compressed

Change their
parents to the root

= =

1, find(v)e9iL 323 0T —TEaY R TF

WRE

1, <&EAFAMAnd(v), find(w),find(x)ed, RF-FI2REGHE

2. FFV,wWxBFF R, findArfREa-REALHDT,

Find ¢ %1%

/2 45 5= I,

// V2RI
public int cFind(int x)

{
if(s[x]<0)

return X;
else
{
int root = find(s[x]);
s[x] = root;
return root;
}

E- 23 E)
public int cFind(int x)
{ .
Iint cur = Xx;
while(s[cur] >= 0)
cur = s[cur];
root = cur;

cur = x;
while(s[cur] >= 0)
{
int tmp = s[cur];
s[cur] = root;
cur = tmp;

b

return root

Challenges for the Analysis

;x Path compressed

W X

cFind does twice as many
link operations as the find

does for a given node in a HD@ cFind will traverse
given tree. shorter paths

but...

Analysis: the Basic ldea

* cFind may be an expensive operation
— 1n the case that find(7) 1s executed and the node i has great
depth.
* However, such cFind can be executed only for limited
times
— Union(rl,r2) €381 sLE 1289 Br A -F-E R E IR PR B8R
o], SEIndXEFF Ry iF TR T REF T Jn—R
compression# 1F.
— Path compressions depends on previous unions
* So, amortized analysis(49#&=#1) applies
— [/ ITRBFHATFMIUFRTFISBAEAATIRE, TRIGFLBE
Fe B TR F MR LA LT IHRTEFRIRNFHBIIEFE R

Co-Strength of wUnionand cFind

© O((n+m)log*(M) . [Whats log*(n)?
o Link operations for a " o Define the function H as
Union-Find program following:
of length m on a set of
n elements is in the H(0)=1
worst case. H(@i)=2""" for i>0
o Implemented with
wUnion and cFind o Then, log™(j) for ;=1 is
defined as:
log*(j)=min{ k| H(k)>j }

Lectures on Algorithm Design & Analysis

10/22/2024
/22/ (LADA) 2017

A Function Growing Extremely Slowly

* Function Log-star

* Function H: log*(j) is defined as the
{ H(0)=1 least i such that:

H(i+1)=2170 H(i)2j for >0

* Log-star grows
extremely slowly

log*(n)
(p)

that 1s: H(k)=2

Note: lim =)

n— log
H grows extremely fast:

H(4)=216=65536
H(5)=265536

p is any fixed nonnegative
constant

65536 *
Lectures on Algo% '§e5|gn & A nalysis 2 1 lOg (x) 5

28
(LADA) 2017

10/22/2024

Umon Find Program #t, /7 it #¢ éfy e Wi

WUnlon'%'é?aFﬁir%w IR FEIEIIRFT IR, SEFE— RSB E R EF IR R
=]
— TEEwUnionRESEREFHPevEs
* CFind##TESERIE I LEH, ERRSTERE IR T I,
— 4B cFind(X)MATIFXE IR R0y, B4 T BXBlyH a5 MM ITEYS, Hia buh sk 4B
S ARy
o BIN—EIey ZExploreAndCompress(X,y);
— BRyEXEHIEKRLZE R ; MBI Ry, HHAITHERERLE
— BYyRXAAENEYIRTFRaYeFEE, ExploreAndCompress(x,y)FecFind(x)3 17485189 3% TF
— REUAyHHREBF-HeyE549 K12k, ExploreAndCompress(X,y)IRITe9 3 TEHEL R,

cFind(x) //ARET1EZYy,

/17 1Br-FExploreAndCompress(X,y)
wUnion(...) /B FIRESEFH, REXTv

|/ 5 ZE At 25 4 BRI IRIF T REGRTE (BPTEYr) |, AR SH4u 2548
| oz mmorey,

RIFLETE 3%, FMTLAie—-1Union-Find Program
wUnion(...) AT IR I — D F I IRTESF D)
ExploreAndCompress(x,y) o FTERE—AwUnionikTF,

o iR —BExploreAndCompressiTF.

#] +

o x+F-6-1FayUnion-Find

wUnion(l,Z) @ @ wUnion(1,2) 0

wUnion(3,4) wUnion(3,4)

wl)nlon(l,3) wUnion(1,3) 9 e e
cF|n0.|(4) wUnion(5,6)

wUnfon(5,6) ‘ wUnion(1,5) e e

wUnion(1,5) ExploreAndCompress(4,1)

cFind(6) 7‘ e e e ExploreAndCompress(6,1) ‘
FirbA, —“~Union-Find

(6) O O &
program i] LG AE &2 : ' e

1. JefdiF— & %llwUnion

i s
2 JaiE— &5
o E NN @/ D@ 6 ©

Definitions with a Union-Find
Program P

* Forest F: the forest constructed by the sequence
of union 1nstructions in P, assuming;:
— wUnion 1s used;
— the finds 1n the P are 1gnored

* Height of a node v 1n any tree: the height of the
subtree rooted at v

* Rank of v: the height of vin F

7= =N W BN VY S2 LS PR D= ==

— BARWE T
PR R | pa o manes sk, HPEYIE TSR A LY W, B
— ZVHEY IR finds s #ko sk AT EY 2548,
= FARIER|) Rankwd & TR 2% R vIRE LIS EIHY £
fnF-FH 1138 Union-Find & it #3529 wUnion +
ExploreAndCompress/&2I, B4 FUTT LAFeRank(v)EFETERVE
HaBY A S

wUnion(1,2)
wUnion(3,4)
wUnion(1,3)
wUnion(5,6)
wUnion(1,5)
ExploreAndCompress(4,1)
ExploreAndCompress(6,1)

Constraints on Ranks in F

* The upper bound of the number of nodes with rank »
. n
(7>20)1s —
27/'
— Remember that the height of the tree built by wUnion is at
most | 1gn|, which means the subtree of height » has at least

27 nodes.

— The subtrees with root at rank r are disjoint.

* There are at most LlognJ different ranks.

— There are altogether n elements 1n S, that 1s, n nodes in F.

Increasing Sequence of Ranks

* The ranks of the nodes on a path from a leaf to a
root of a tree 1n /' form a strictly increasing
sequence.

 When a cFind (ExploreAndCompress) operation
changes the parent of a node, the new parent has
higher rank than the old parent of that node.
— Note: the new parent was an ancestor of the previous
parent.

— MBS ZE R VEY R AR B) AR AT e IR R AT
R HREFIRIELE

Grouping Nodes by Ranks

* Node ves; (i20) iff. log*(1+rank of v)=i
— which means that: if node v 1s 1n group i, then
r, < H(i)-1, but not in group with smaller labels
* So,

— Group 0: all nodes with rank 0 Group 5 exists only when n is

_ Group 1: all nodes with rank 1 at least 292336 \What is that?

— Group 2: all nodes with ra or 3

— Group 3: all nodes with 1ts rank in [4,15]

— Group 4: all nodes with 1ts rank 1n [16, 65535]
—(G\roup 5/ 11 nodes with 1ts rank 1n [65536, ?77?]

Very Few Groups

* Node ves; (i20) iff. If log*(n+1)=k, then
log*(1+rank of v)=i ks i)
* Upper bound of the number of
distinct node groups 1s log*(n+1) 22 >n+1

— The rank of any node 1n F'1s at

most | logn_, so the largest group (k-1) 2’%2

index is log*(1+ Llogn))=log*(logn+1 1)
= log*(n+1)-1 9 >log(n+1)

Amortized Cost of Union-Find

* Amortized Equation Recalled

— amortized cost = actual cost + accounting cost

* The operations to be considered:
— n makeSets

— m union & find (with at most n-1 unions)

One Execution of cFind(w,)

/. Root=wy Only when k=0,1, there
Groups in a strict oM is no parent change
k-1

increasing order

‘\. For one cFind operation, the
G actual cost is 2k Not 2(k+1)
roup \ .
Boundary N
/. Wi . ;
o | Accounting cost is -2 for each
7 Wy “o-._ | pairof (w, w) for the the 2

Note: the - | nodes in the same group only,
ranks are not \ | which we call a withdrawal.
consecutive N
generally

.v=w0
10/22/2024 Lectu™®&&n Algorithm Design & Analysis 38

(LADA) 2017

Amortizing Scheme for wUnion-cFind

* makeSet
— Accounting cost is 4log*(n+1) CBIREAN 45 s TIATF 18R
— So, the amortized cost 1s 1+4log*(n+1)

* wUnion

— Accounting cost is 0
— So the amortized cost 1s 1

* cFind
— Accounting cost is describes as 1n the previous page.
— Amortized cost < 2k-2((k-1)-(log*(n+1)-1))=2log*(n+1)
(Compare with the worst case cost of cFind, 2logn)

Validation of the Amortizing Scheme

* We must be assure that the sum of the
accounting costs is never negative.

* The sum of the negative charges, incurred by
cFind, does not exceed 4nlog™(n+1)
— We prove this by showing that at most 2nlog*(n+1)

withdrawals on nodes occur during all the
executions of cFind.

— &% - w:Rwithdrawal Z-2.

10/22/2024 Lectures on Algorithm Design & Analysis

(LADA) 2017 40

Key ldea in the Derivation

For any node, the number of
withdrawal will be less than
the number of different ranks
in the group it belongs to

— When a cFind changes the
parent of a node, the new parent
1s always has higher rank than

2
0

\
\
'\. \
\
v

the old parent.

— Once a node 1s assigned a new
parent in a higher group, no
more negative amortized cost
will incurred for it again.

The number of different ranks
1s limited within a group.

W RIRGEVEIW2EY ISR, BRLEITE
saccounting>39-2; HRELES, VEIRT R
#YRank s s34

EgEZIE, VEIRT R IW,

B4 G F-AVEICHIFATIR R L R BBREF
—FHRRREV->W, RVITZIFREEgroup,
accounting cost=90,

=4 T T

Derivation

* Bounding the number of withdrawals

The number of withdrawals from all w € S is:

log*(n+1)—1 __

1
Z; (\ (4 pnumber of nodes in group 1)

The number of nodes in group ¢ is at most:

H(i)—1

n 2n
Z or = 2H(z 1) 23 QH(Z 1) H(z’)
T':H(i—l)

So,

Z H() -2 — 9nlog*(n + 1)

Lectures on Algorithm Design & Analysis

10/22/2024
/22/ (LADA) 2017

42

Conclusion

* The number of link operations done by a Union-
Find program implemented with wUnion and
cFind, of length m on a set of n elements 1s 1n
O((n+m)log*(n)) 1n the worst case.

— Note: since the sum of accounting cost 1s never

negative, the actual cost 1s always not less than

amortized cost. The upper bound of amortized cost
1s: (n+tm)(1+4log™*(n+1))

Thank you!
Q& A

Yu Huang
http://cs.nju.edu.cn/yuhuang

Lectures on Algorithm Design & Analysis

10/22/2024
/22/ (LADA) 2017

44

