并查集

南京大学计算机系赵建华

Union-Find

- Dynamic Equivalence Relation
 - Examples
 - Definitions
 - Brute force implementations
- Disjoint Set
 - Straightforward Union-Find
 - Weighted Union + Straightforward Find
 - Weighted Union + Path-compressing Find

Maze Generation

Select a wall to pull down randomly

If *i* and *j* are in same *equivalence class*, then select another wall to pull down.

Otherwise, joint the two classes into one.

The maze is complete when the inlet and outlet are in one equivalence class.

Black Pixels

- Maximum black pixel component
 - Let α be the size of the component
- Color one pixel black
 - How α changes?
 - How to choose the pixel, to accelerate the change in α

In Minimum Spanning Tree

- Kruskal算法生成图的最小生成树
- Kruskal's algorithm, greedy strategy:
 - Select one edge
 - With the minimum weight
 - Not in the tree
 - Evaluate this edge
 - This edge will **NOT** result in a cycle
- Critical issue:
 - How to know "NO CYCLE"?
 - The two nodes of this tree should not be connected by the edges selected previously.

结点之间的建加 关系实际上就是 一个动态的等价 关系

Dynamic Equivalence Relations

- Equivalence
 - Reflexive, symmetric, transitive
 - Equivalent classes forming a partition
 - S的一个分划: S的一组互不相交的子集, 且子集的并集就是S
- Dynamic equivalence relation
 - Changing in the process of computation
 - Is instruction: yes or no (in the same equivalence class)
 - MAKE instruction: combining two equivalent classes, by relating two unrelated elements, and influencing the results of subsequent IS instructions.
 - Starting as equality relation

Implementation: How to Measure

- The number of basic operations for processing a sequence of *m* MAKE and/or Is instructions on a set *S* with *n* elements.
- An Example: $S=\{1,2,3,4,5\}$
 - 0. [create] {{1}, {2}, {3}, {4}, {5}}

```
- 1. IS 2≡4? No
```

- 2. IS 3≡5? No

- 3. MAKE $3 \equiv 5$. $\{\{1\}, \{2\}, \{3,5\}, \{4\}\}$

- 4. MAKE $2 \equiv 5$. $\{\{1\}, \{2,3,5\}, \{4\}\}$

- 5. **IS** 2≡3? Yes

- 6. MAKE 4=1. $\{\{1,4\}, \{2,3,5\}\}$

— 7. IS 2≡4? No Lectures on Algorithm Design & Analysis
10/22/2024

(LADA) 2017

Union-Find based Implementation

- The maze problem
 - 初始状态: Each cell as a set
 - Randomly delete a wall and union two cells
 - Loop until you find the inlet and outlet are in one equivalent class
- The Kruskal algorithm
 - 初始状态: Each node as a set
 - Choose the least weight edge (u,v)
 - Find whether u and v are in the same equivalent class
 - If not, add the edge and union the two nodes

Implementation: Choices

- Matrix (relation matrix)
 - Space in $\Theta(n^2)$, and worst-case cost in $\Omega(mn)$ (mainly for row copying for MAKE)
- Array (for equivalence class ID)
 - Space in $\Theta(n)$, and worst-case cost in $\Omega(mn)$ (mainly for search and change for MAKE)
- Disjoint Set
 - A collection of disjoint sets, supporting *Union* and *Find* operations
 - Not necessary to traverse all the elements in one set

Union-Find ADT

- Constructor: Union-Find create(int n)
 - sets=create(n) refers to a newly created group of sets $\{1\}$, $\{2\}$, ..., $\{n\}$ (n singletons)
- Access Function: **int** find(UnionFind sets, e)
 - find(sets, e)=< e >
- Manipulation Procedures
 - void makeSet(UnionFind sets, int e)
 - void union(UnionFind sets, int s, int t)

Using Union-Find (as inTree)

- IS $s_i \equiv s_j$:
 - $-t = find(s_i);$
 - $-u = find(s_i);$
 - -(t=u)?
- MAKE $s_i \equiv s_j$:
 - $-t = find(s_i);$
 - $-u = find(s_j);$
 - union(t,u);

implementation by inTree

Union-Find的数据结构

- 逻辑上
 - 各个元素编号为0, 1, 2, •••, n-1
 - 使用一棵树表示一个子集, 子集中的元素相互等价。
 - 整个集合划分成为互不相交的子集(树)
- 实现上
 - 使用数组记住每个元素(结点)的父亲结点(的编号)
 - 树的根节点的父亲结点为-1.
- $\{\{0\}, \{1, 2, 4\}, \{3\}\}$ 的三种可能的表示

Union(0,3)之后得到什么样的数据?

并查集的数组实现 (Slow)

- 用长度为n的数组s表示n个元素
 - S[i]表示第i个元素的父节点
 - -S[i] == -1表明i是某棵树的根节点

```
public DisjSetsSlow( int numElements )
    s = new int [numElements];
    for(int i = 0; i < s.length; i++)
          s[i] = -1;
public int find( int x )
   if(s[x] < 0)
       return x;
   else
       return find( s[x]);
```

```
public void union( int x, int y)
{
    if(root1 != root2)
       s[ root1] = root2;
}
```

Union-Find Program

- A union-find program of length *m*
 - is (a create(n) operation followed by) a sequence of m union and/or find operations in any order
- A union-find program is considered an input
 - The object on which the analysis is conducted
- The measure: number of accesses to the parent
 - assignments: for union operations
 - lookups: for find operations

link operation

- Union-Find Program用于union-find数据结构访问/操作的效率分析:
 - 如果一个算法A使用了union-find作为基础数据结构,那么A的一次运行过程中对这个数据结构的操作序列就是一个Union-Find Program.
 - 我们可以整体地分析这个Union-Find Program所需要的时间,也就是算法A花费在union-find上的总时间。

Union-find Program的例子

```
总共n个元素
    Union(1,2)
    Union(2,3)
n-1. Union(n-1,n)
    Find(<u>.</u>1)
n.
    Find(1)
m.
   Example
```

```
public int find( int x )
   if(s[x] < 0)
       return x;
   else
       return find( s[x]);
}
public void union( int x, int y)
   if(root1 != root2)
        s[ root1] = root2;
```


Worst-case Analysis for Union-Find Program

- Assuming each lookup/assignment take O(1).
- Each makeSet or union does one assignment, and each find does d+1 lookups, where d is the depth of the node.

Union的改进

- · Union(r1,r2)实际上既可以把r2作为合并后的 树的根, 也可以把r1作为合并后的树的根
- 如何选择新的根, 使得寻找的效率比较高?

Weighted Union: for Shorter Trees

- Weighted union (wUnion)
 - always have the tree with fewer nodes as subtree

To keep the *Union* valid, each *Union* operation is replaced by: t=find(i);u=find(j);union(t,u)

The order of (*t*,*u*) satisfying the requirement

Cost for the program example: n+3(n-1)+2(m-n+1)

Weighted Union的实现

```
public DisjSetsSlow( int numElements )
    s = new int [numElements];
    weights = new int[numElements];
    for( int i = 0; i < s.length; i++)
        s[i] = -1; weights[i] = 1;
public int find( int x )
   if (s[x] < 0)
       return x;
   else
       return find( s[x]);
```

```
//注意这里仍然假设root1和root2是树的根
public void wUnion( int root1, int root2)
{
    if(root1 == root2)
        return;
    if(weights[root2] > weights[root1])
    { int tmp = root1; root1 = root2; root2 = tmp;}

    s[ root2] = root1;
    weights[root1] = weights[root1] + weights[root2];
}
```

Upper Bound of Tree Height

- After any sequence of *Union* instructions, implemented by wUnion, any tree that has k nodes will have height at most $\lfloor \log k \rfloor$
- Proof by induction on *k*:
 - base case: k=1, the height is 0.
 - by inductive hypothesis:
 - $h_1 \le \lfloor \lg k_1 \rfloor$, $h_2 \le \lfloor \lg k_2 \rfloor$
 - h=max(h1, h2+1), k=k1+k2
 - if $h=h_1$, $h \le \lfloor \lg k_1 \rfloor \le \lfloor \lg k \rfloor$
 - if $h=h_2+1$, note: $k_2 \le k/2$ so, $h_2+1 \le \lfloor \lg k_2 \rfloor + 1 \le \lfloor \lg k \rfloor$

Upper Bound for Union-Find Program (With Weighted Union)

- A Union-Find program of size *m*, on a set of *n* elements, performs **O**(*n*+*m*log*n*) link operations in the worst case if *wUnion* and straight *find* are used
- Proof:
 - At most n-1 wUnion can be done, building a tree with height at most $\lfloor \log n \rfloor$,
 - Then, each *find* costs at most $\lfloor \log n \rfloor + 1$.
 - Each *wUnion* costs in O(1), so, the upper bound on the cost of any combination of m *wUnion/find* operations is the cost of m *find* operations, that is $m(\lfloor \log n \rfloor + 1) \in O(n + m \log n)$

There do exist programs requiring $\Omega(n+(m-n)\log n)$ steps.

Path Compression

- 并查集中的树是用来发现各个结点所在的根节 点的,只要根节点不变,这棵树的形状不影响 find的结果。
- 树的形状越矮越好
- 在find(x)的过程中会遍历从x到达x所在树的根 节点的路径上的全部结点
 - 这些结点和X在同一个子集 (根节点相同)
 - 只需要一次操作就可以将这些结点直接链接到根节点
 - 虽然本次find多花了时间,但是后面的find可以省下很多时间

付出:

1、find(v)的过程增加了一倍的操作

收益:

- 1、之后再调用find(v),find(w),find(x)时,只需要2次漫游
- 2、对于v,w,x的子节点, find所需要的次数也减少了。

Find的路径压缩实现

```
//递归实现
public int cFind( int x )
   if( s[ x ] \leq 0 )
       return x;
    else
       int root = find( s[x]);
        s[x] = root;
       return root;
```

```
//迭代实现
public int cFind( int x )
   int cur = x;
   while(s[cur] \ge 0)
       cur = s[cur];
   root = cur;
   cur = x;
   while(s[cur] \ge 0)
       int tmp = s[cur];
       s[cur] = root;
       cur = tmp;
    return root
```

Challenges for the Analysis

Analysis: the Basic Idea

- cFind may be an expensive operation
 - in the case that find(i) is executed and the node i has great depth.
- However, such cFind can be executed only for limited times
 - Union(r1,r2)使得r1或者r2的所有子结点离根节点的路径增加1,导致find这些子节点的时候可能需要增加一次compression操作.
 - Path compressions depends on previous unions
- So, amortized analysis(均塊分析) applies
 - 均摊分析通常用于m个操作之间相互促进, 使得总体复杂度远低于m乘以单个操作最坏条件的情况

Co-Strength of wUnion and cFind

• $O((n+m)\log^*(n))$

- Link operations for a
 Union-Find program
 of length m on a set of
 n elements is in the
 worst case.
- Implemented with
 wUnion and cFind

What's $log^*(n)$?

Define the function *H* as following:

$$\begin{cases}
H(0) = 1 \\
H(i) = 2^{H(i-1)} \text{ for } i > 0
\end{cases}$$

○ Then, $\log^*(j)$ for $j \ge 1$ is defined as:

$$\log^*(j) = \min\{k \mid H(k) \ge j\}$$

A Function Growing Extremely Slowly

• Function *H*:

$$\begin{cases}
H(0)=1 & 2 \\
H(i+1)=2^{H(i)} & 2
\end{cases}$$
that is: $H(k)=2$

Note:

H grows extremely fast:

$$H(4)=2^{16}=65536$$

 $H(5)=2^{65536}$

Function Log-star

log*(*j*) is defined as the least *i* such that:

$$H(i) \ge j$$
 for $j > 0$

 Log-star grows extremely slowly

$$\lim_{n\to\infty}\frac{\log^*(n)}{\log^{(p)}n}=0$$

p is any fixed nonnegative constant

Union-Find Program执行过程的性质

- wUnion会合并两棵树,并设定新的根节点,导致某一棵树的结点离根节点的 距离加1
 - 但是wUnion不会改变子树中的结构
- cFind操作会改变树的结构, 但是不会改变树的根节点。
 - 如果cFind(x)执行时x的根节点为y,那么它会将x到y的结点进行压缩,路径上的结点都会直接指向y
- 引入一个虚拟的函数ExploreAndCompress(x,y);
 - 要求y是x的祖先结点:从x遍历到y. 并进行路径压缩
 - 当y是x所在树的根节点的时候, ExploreAndCompress(x,y)和cFind(x)执行相同的操作
 - 只要以y为根的子树的结构不变, ExploreAndCompress(x,y)执行的操作也不变。

ExploreAndCompress(x,y)

这两个程序所需要的操作(即代价), 以及对树的结构的改变是等价的。

根据上面的转换,我们可以把一个Union-Find Program 执行过程转换为一个等价的操作序列:

- 前面是一组wUnion操作。
- 之后是一组ExploreAndCompress操作。

例子

• 对于6个元素的Union-Find

wUnion(1,2)wUnion(1,2) wUnion(3,4)wUnion(3,4)wUnion(1,3)wUnion(1,3) 3 2 cFind(4) wUnion(5,6) wUnion(5,6) wUnion(1,5) wUnion(1,5) ExploreAndCompress(4,1) cFind(6) ExploreAndCompress(6,1) 所以,一个Union-Find program可以看作是: 1、先使用一系列wUnion 构造出一个森林 2、然后通过一系列压缩 6 过程得到一个矮树森林

Definitions with a *Union-Find* Program P

- Forest *F*: the forest constructed by the sequence of *union* instructions in P, assuming:
 - wUnion is used;
 - the *find*s in the *P* are ignored
- Height of a node v in any tree: the height of the subtree rooted at v
- Rank of v: the height of v in F
 - 静态的值 成具有更 注意:

- 1、F是一个虚拟的森林。在P的运行中并不会真的出现, - 当V的父节finds函数会改变树的结构。
 - 会再被压 2、Rank的主要用途是设置v被向上移动的上界。

如果我们把Union-Find等价地转换为wUnion+

ExploreAndCompress序列,那么我们可以把Rank(v)看作是v压 缩的起点

wUnion(1,2)

wUnion(3,4) wUnion(1,3)

wUnion(5,6)

wUnion(1,5)

ExploreAndCompress(4,1)

ExploreAndCompress(6,1)

Constraints on Ranks in F

- The upper bound of the number of nodes with rank r $(r \ge 0)$ is $\frac{n}{2^r}$
 - Remember that the height of the tree built by *wUnion* is at most $\lfloor \lg n \rfloor$, which means the subtree of height *r* has at least 2^r nodes.
 - The subtrees with root at rank r are disjoint.
- There are at most $\lfloor \log n \rfloor$ different ranks.
 - There are altogether n elements in S, that is, n nodes in F.

Increasing Sequence of Ranks

- The ranks of the nodes on a path from a leaf to a root of a tree in F form a strictly increasing sequence.
- When a *cFind* (*ExploreAndCompress*) operation changes the parent of a node, the new parent has higher rank than the old parent of that node.
 - Note: the new parent was an ancestor of the previous parent.
 - 当某个结点\\的父节点是\\中的某棵树的根节点时, 不可能再被压缩。

Grouping Nodes by Ranks

- Node $v \in s_i$ ($i \ge 0$) iff. $\log * (1 + \text{rank of } v) = i$
 - which means that: if node v is in group i, then

 $r_{\rm v} \leq {\rm H}(i)$ -1, but not in group with smaller labels

- So,
 - Group 0: all nodes with rank 0
 - Group 1: all nodes with rank 1
 - Group 2: all nodes with rank 2 or 3
 - Group 3: all nodes with its rank in [4,15]
 - Group 4: all nodes with its rank in [16, 65535]
 - —(Group 5: all nodes with its rank in [65536, ???]

Group 5 exists only when *n* is

at least 265536. What is that?

Very Few Groups

• Node $v \in S_i$ ($i \ge 0$) iff.

$$\log^*(1+\text{rank of }v)=i$$

- Upper bound of the number of distinct node groups is $\log^*(n+1)$
 - The rank of any node in F is at most $\lfloor \log n \rfloor$, so the largest group index is $\log^*(1+\lfloor \log n \rfloor)=\log^*(\lceil \log n+1 \rceil)$ = $\log^*(n+1)-1$

Amortized Cost of Union-Find

- Amortized Equation Recalled
 - amortized cost = actual cost + accounting cost

- The operations to be considered:
 - n makeSets
 - -m union & find (with at most n-1 unions)

One Execution of *cFind*(w_0)

Amortizing Scheme for wUnion-cFind

- makeSet
 - Accounting cost is 4log*(n+1) (即每个结点预存的钱)
 - So, the amortized cost is $1+4\log^*(n+1)$
- wUnion
 - Accounting cost is 0
 - So the amortized cost is 1
- cFind
 - Accounting cost is describes as in the previous page.
 - Amortized cost $\leq 2k-2((k-1)-(\log*(n+1)-1))=2\log*(n+1)$ (Compare with the worst case cost of *cFind*, $2\log n$)

Validation of the Amortizing Scheme

- We must be assure that the sum of the accounting costs is never negative.
- The sum of the negative charges, incurred by cFind, does not exceed $4n\log*(n+1)$
 - We prove this by showing that at most $2n\log^*(n+1)$ withdrawals on nodes occur during all the executions of cFind.
 - 注意: 每次withdrawal是-2.

Key Idea in the Derivation

- For any node, the number of withdrawal will be less than the number of different ranks in the group it belongs to
 - When a *cFind* changes the parent of a node, the new parent is always has higher rank than the old parent.
 - Once a node is assigned a new parent in a higher group, no more negative amortized cost will incurred for it again.
- The number of different ranks is limited within a group.

如果压缩v到w2的路径,路径上的每个结点accounting为-2;每次压缩后,v的父节点的Rank必然增长。

压缩之后,v的父节点为w。那么对于从v到它的某个祖先结点的路径第一条边是v->w,他们位于不同的group,accounting cost为0。

Lectures on Algorith

Derivation

Bounding the number of withdrawals

The number of withdrawals from all $w \in S$ is:

a loose upper bound of ranks in a group

$$\sum_{i=0}^{\log^*(n+1)-1} (H(i))$$
 number of nodes in group i)

The number of nodes in group i is at most:

$$\sum_{r=H(i-1)}^{H(i)-1} \frac{n}{2^r} \le \frac{n}{2^{H(i-1)}} \sum_{j=0}^{\infty} \frac{1}{2^j} = \frac{2n}{2^{H(i-1)}} = \frac{2n}{H(i)}$$

So,

$$\sum_{i=0}^{log^*(n+1)-1} H(i) \frac{2n}{H(i)} = 2n \log^*(n+1)$$
 Lectures on Algorithm Design & Analysis

(LADA) 2017

Conclusion

- The number of link operations done by a *Union-Find* program implemented with *wUnion* and *cFind*, of length *m* on a set of *n* elements is in $O((n+m)\log^*(n))$ in the worst case.
 - Note: since the sum of accounting cost is never negative, the actual cost is always not less than amortized cost. The upper bound of amortized cost is: $(n+m)(1+4\log*(n+1))$

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang